Vibrations can sometimes violently load Bourdon tube pressure gauges. They cause pointer flutter and also, in the event of sustained loading, damage to the measuring system, even to the point of total failure. The most efficient protection against these effects is supplied by measuring instruments with case filling.
The principle is simple: The pressure gauge case is filled up with a liquid, usually glycerine or silicone oil. Regarding vibrations, the case filling optimally dampens the vibrations of the Bourdon tube, transmission mechanism and movement. Left Behind prevents pointer flutter, and thus the displayed measured value remains clearly readable. At the same time, the measuring system is protected against premature wear, because the fill fluid acts as a lubricant for the moving components. This considerably extends the service life of the pressure gauge.
Figure 1: View of the within of a pressure gauge with a dampened movement. The circle marks the seat of the pot with the silicone oil that accommodates the pointer pinion.
Highly viscous silicone oil
Instead of a musical instrument with case filling, a pressure gauge with silicone-dampened movement is frequently chosen. In this design, the pointer pinion moves in a pot of highly viscous silicone oil. Therefore, the pointer also operates largely free from vibration. However, this effect, that is essential for immobilising the pointer, slows down other moving components of the movement. The effect is a significantly higher wear of the parts than with a pressure gauge with fill fluid.
WIKA confirmed this information some time ago in an internal laboratory test with different pressure gauge versions. Excellent , pressure gauges with dampened movement and pressure gauges with case filling were subjected to an endurance test under practical conditions that have been harsher than those of the EN 837-1 pressure gauge standard. The investigation produced the following results:
Pressure gauge version (type of dampening)
Zero point offset after 50 hrs / 200 hrs
Condition of the instruments after 200 hours
Unfilled / without dampening
2,3% / 3.0%
Conditionally functional
Dampened movement
2,3% / 66%
No longer functional
Liquid-filled
0,6% / 0,8%
Fully functional
Fast wear
In the test, the unfilled variant ended up being relatively resistant. However, given the inevitable pointer flutter, this type of pressure gauge is not recommended for applications with vibrations. This verdict also applies to the version with dampened movement, particularly in applications with stronger and sustained vibrations. The pointer stability is, in this case, countered by a rapid wear of the other moving parts. This version was, already, no more functional well before the end of the test.
Figure 2: Cracks in the Bourdon tube or perhaps a worn-out link are examples of typical vibration damage in the mechanisms of pressure gauges. Such wear is avoided by case filling.
The pressure gauge with case filling was the only variant which remained fully operational. Due to the fill fluid, the risk of leakage is often used as an argument against this kind of instrument. WIKA cases with filling are therefore designed and handled to reduce the chance of leakage because of vibration to a minimum.
Note
To find out more on our selection of pressure gauges, visit the WIKA website.
See also our article
Filling liquids in pressure gauges: Usage and advantages